

Parallelize Mesh Simplification Algorithm with
Pthread and OpenMP

Bole Chen (bolec@andrew.cmu.edu)

Haixin Liu (haixinl@andrew.cmu.edu)

Summary

Surface mesh simplification is the process of reducing the number of faces

used in a surface mesh while keeping the overall shape, volume and boundaries

preserved as much as possible. There are lots of mesh simplification algorithms,

and all of them are iterative, greedy algorithms that might cost really long time. One

big problem is that all these algorithms have really strong dependency, which

makes it hard to parallelize them. For this project, we proposed our new

lazy-update implementation of mesh simplification algorithm. This implementation

gives us some spaces for parallelism. We explored different methods to parallelize

this our serial implementation with pThread and OpenMP. We run experiments on

a 8-core Linux machine from AWS and found that our final solution can achieve

nearly linear speedup without losing too much qualities.

Background

The problem of approximating a given input mesh with a less complex but

geometrically faithful representation is well-established in computer graphics.

Given the visual complexity required to create realistic-looking scenes,

simplification efforts can be essential to efficient rendering. And different

simplification ratios are need for different precision requirements. The figures

below show simplifying Stanford Dragon from 100% to 1%.

100% 50%

 10% 1%

In this work, we only handle the 3D OBJ files. A model object consists of

thousands to millions of triangles. Each triangle has its direction for illumination

and it shares 3 vertexes in 3D space with some other triangles. For the input file

with this format, the first line gives the number of vertex and triangle. Then follows

by the coordinate of each vertex and the vertex ids for each triangle. The output

files of mesh simplification algorithm should follow the same format.

Serial Version Algorithm Introduction

2

The basic idea of mesh simplification algorithm is to maintain the error cost of

each edge from all triangles in a model object. Each time an edge with the lowest

error cost will be selected and collapsed. That two vertexes will be merged into one

single vertex. Then firstly, the topological structure of nearby area need to be

updated, and also the error costs of all related edge need to be re-calculated. The

following figure shows how collapsing a single edge would influence nearby

topological structure and other edges’ error costs.

Although the basic idea of mesh simplification algorithm is simple and

straightforward, the implementation is complex. On the one hand, we have to

maintain a lot of data structure such as vertex, edge, triangle, and almost all of

these data have relationship and dependency, which means even the change of

one single vertex will lead to the update of a lot of other data. On the other hand,

because the algorithm selects an edge with the lowest error cost to collapse for

each iteration, always minimum heap is used to maintain the error costs of all

edges. But the problem is that for each iteration, the top edge is popped out and at

the same time, some other edges also need to be updated. As a result, the

structure of the minimum heap changes frequently. The following table shows the

pseudo-code of common mesh simplification algorithm.

3

Pseudo Code

1. Read Vertex Data and Triangle Data, Initialize a Minimum Heap Q

2. Foreach Edge: Calculate Error Cost, Push in Q

3. While not Achieve Simplification Ratio Requirement:

4: Pop Top Edge from Q

5: Collapse the Edge

6: Update Topological Structure in Nearby Area

7: Calculate and Update Error Cost for Related Edges in Q

8: Generate Output OBJ File

Potential Parallelisms Inside

Because in the algorithm there is really strong dependency inside each

iteration and between different iterations, we believe we have mainly two directions

to parallelize the mesh simplification algorithm. Firstly, we can try to find the

independent part inside each iteration. These independent tasks can be done

concurrently. And we can benchmark the fraction of the algorithm that is

parallelizable in the overall algorithm. According to Amdahl’s Law, we can know the

upper-bound of speedup we can achieve. Secondly, the basic idea is that actually

we can collapse edges from different parts of an object as long as they don’t

influence each other. It’s obvious that the collapse of edge in the left side doesn’t

have any impact on the topological structure as well as error cost of right side. If

this approach works, the speedup we can gain just based on how much resources

we have to run the program.

Challenges for Parallelisms

4

The challenge for approach one is to find the parallelizable part in original

algorithm. And our concern is that the fraction of the parallelizable part can be not

enough to gain high speedup. And also the cost for each iteration is limited, hence

the synchronization can be a huge overhead compared to computation time.

The challenge for approach two is how to partition the mesh and join together

after processing. Or in other words, how do resolve the border problem. One of the

papers we studied uses greedy BFS approach to produce even partitions. It uses

MPI to parallel the algorithm, and manages the border problem with

communications. However, the details of this algorithm is not clearly described in

this paper. We need to find out how to partition input mesh and rejoin the

partitions by ourselves. Also because the number of vertex that along the border

margin could be huge, synchronizations would be needed frequently during the

algorithm, which would prevent us from achieving high speedup.

Approach

Lazy-update Serial Implementation of Mesh Simplification

According our study, we found that some original mesh simplification

algorithms are really hard to parallelize with our partition approach because of the

border problem. The reason is that for each collapse operation, besides one edge

needs to be popped out, a lot of other related edges inside the minimum heap

need to be updated. Also a lot of meta datas need to be updated during one single

collapse. All of these factors make the algorithm has really strong dependency. To

make our way to parallelism easier, we proposed a lazy update implementation.

Instead of changing the value of edge and vertex, we just give an order id to

each vertex and edge. If a vertex’s value change, we just set that vertex as stale, and

insert a new one. Also for a edge in the minimum heap, if the order id of that two

vertexes not equal to the vertexes’ lastest id, the edge should be seemed as invalid,

5

hence we just pop that edge out without collapsing it. We call it lazy update because

rather than change the value of edge in the minimum heap, we just set that

element as invalid, and push in a new one. In our new implementation, the

operations to the minimum heap reduce a lot, and therefore it’s easier for us to

parallelize it. The following table shows the pseudo-code of our lazy update mesh

simplification algorithm.

Pseudo Code

1. Read Vertex Data and Triangle Data, Initialize a Minimum Heap Q

2. Foreach Edge: Calculate Error Cost, Push in Q

3. While not Achieve Simplification Ratio Requirement:

4: Pop Top Edge from Q

5: If Edge is Invalid: Continue

6: Collapse the Edge

7: Update Topological Structure in Nearby Area

8: Calculate and Update Error Cost for Related Edges in Q

9: Push New Edges into Q & Set Old Edges as Invalid

10: Generate Output OBJ File

Preliminary results

In this section, we show our benchmark on our new serial lazy update

algorithm. We show the running time, the percentage of the potential parallel parts

in the serial algorithm and how many independent tasks we can generate to

parallelize for the algorithm for models of different size and with different

simplification ratio. We run all these benchmarks in a 4-core Mac Pro machine with

GCC compiler.

6

Stanford Bunny with 35,292 vertices and 70,580 triangles

Ratio Running Time Percentage of
Parallelism

Concurrent
tasks number

0.5 3.63s 62.81% 7.23

0.1 7.80s 53.57% 7.13

0.01 8.96s 53.12% 7.11

Stanford Dragon with 54,855 vertices and 109,227 triangles

Ratio Running Time Percentage of
Parallelism

Concurrent
tasks number

0.5 4.81s 65.25% 6.85

0.1 10.81s 53.82% 6.81

0.01 12.49s 52.66% 6.73

Stanford Lucy with 1,002,540 vertices and 2,005,076 triangles

Ratio Running Time Percentage of
Parallelism

Concurrent
tasks number

0.2 125.32s 48.46% 7.06

0.1 315.74s 45.21% 7.05

0.01 375.13s 43.26% 7.03

We can see from the experiments that when the size of model is large, it takes

longer time for the mesh simplification algorithm to complete. That's why we need

parallelism to speedup it. Another thing to notice is that the potential parallel part

7

in this algorithm is just about 40% and the concurrent task number is no more than

8. We explored our first try based on these results.

First Try to Parallelism

Our first try to parallelize the algorithm is to identify the independent loops

within the serial algorithm. These loops can be distributed to many workers in a

shared address space fashion. Common implementations include OpenMp and

Pthread library. We implemented this parallel algorithm in both of these two ways.

The first step is to benchmark the serial algorithm and find out the time-consuming

independent loops. Unfortunately, this mesh simplification algorithm is highly

serial, since each modification is based on the previous one. Finally we decided to

parallelize the loop within one modification, which updates the error costs of all

neighbor edges of a merged vertex.

We firstly implemented the parallel program with Pthreads and then with

OpenMP, and tested them on Macbook Pro machine. However, we observed a slow

down of the running time instead of speedup. We then tested them on 8-core AWS

Linux machine, and got the similar results. We found out 3 reasons why this

approach does not work:

1. In each iteration of this loop, a shared queue is maintained. The concurrent

update of this queue need to be protected by lock (or atomic operations).

2. The task for each worker thread is not computation intensive. It only involves

a few calculations, and then updates the shared data structure. You can see

some related pre-result from last section in Preliminary results.

3. The overhead of creating/destroying threads.

To overcome these issues, we tried many ways to optimize it. We kept buffer

to accumulate local updates, and tried to use as few locks as possible by batch

updating. We maintained a pool of threads to avoid creating threads on the fly.

However, the improvement is not satisfying.

8

Partition for Parallelism

After our first (but not successful) attempt in parallelizing independent loops within

serial code, we tried several other approaches to do mesh simplification in parallel.

A straightforward idea is to partition the original mesh into several blocks, assign

each block to a worker thread, and then merge the blocks into the output mesh.

However, there are several difficulties in implementing this parallel algorithm. The

first challenge is how to partition the input mesh into blocks. These blocks should

be in roughly same size, so that the workload is balanced among worker threads.

Another challenge is how to deal with the block border vertices and edges. If these

elements on or near border change significantly after processing, partitioned blocks

will be hard or even impossible to form a new complete mesh.

We began our exploration with simple assumptions and implementations, and then

refined the algorithm for better performance (speed & quality) step by step.

Margin Unmodified

Easy Partition

We start with the simple way to perform the partition. For the input mesh, we first

calculate the center point, which has the average value of maximum and minimum

x, y and z value of vertices. Based the this center point, the input mesh is

partitioned into 8 (2x2x2) blocks. We start exactly 8 worker threads to process these

8 blocks independently. For border vertices and edges (which we call margin), we

just keep them unmodified in the algorithm. In this way, there is no synchronization

among worker threads needed. Also, no explicit merge process after dealing with

each block is needed, since the margin is left unchanged.

Partition with Task Queue

One of the major drawback of the easy partition algorithm is load balance problem.

It is very likely that the 8 blocks contain different number of triangles, so that the

9

workload of each worker thread can vary significantly. The slowest thread will

determine the performance of whole program.

In order to improve the load balance, we partition the input mesh with finer

granularity. With similar method, we partition the input mesh evenly into 2x2x2,

3x3x3 and 4x4x4 spatial blocks. We set up a task queue which contains workload of

all these blocks at the beginning. All worker threads will pull work (block of mesh)

from this queue and then process that block. The algorithm will finish once the task

queue is empty. We observed much better load balance among worker threads

with this approach. All threads take nearly same amount of time to do tasks. As a

result, the overall speedup of this algorithm is better than the former naive

approach.

Margin Protected

For the two approaches in the last section, we just make the margins between

different blocks as unchangeable. This choice comes with two-side effects. On one

hand, there is no synchronization on the border so that the contention is not a

problem in this case. On the other hand, the quality of output mesh is not satisfying

with low compression ratio. In this case, there are few vertices left in each block,

and the border lines can be clearly seen. The quality is much worse compared with

the output generated by serial algorithm. The figures below show the problem for

the two methods before.

10

 Original mesh 0.02 with serial 0.02 with easy partition 0.02 with task queue (3x3x3)

You can see that simplification quality for the previous two methods is poor,

the density of the margin area is really high while the density inside each partition is

low. Therefore we must cope with the border problem for acceptable simplification

quality. We then tried two different ways to resolve the border problem.

Rough-Grained Lock

The border problem is that when a thread is collapsing an edge near the

margin area in a partition, it might change the topological structure as well as some

values in another partition. If there is another thread being copes with that partition

at the same time, there must be race condition problem. So when a thread is

collapsing the edge in the margin area, all the other edges in margin area must be

protected and cannot be coped with. Because the collapse of the edge in margin

area doesn’t influence the data inside each partition, we only need to protect the

vertexes and edges in the margin area.

The basic idea of this implementation is that we have a global Margin-Lock.

When a thread tries to collapse an edge inside a partition, it just does whatever it

wants. But when a thread tries to collapse an edge in the margin area, it must

acquire the Margin-Lock first. It must release the lock after all the data related to

other partitions have been updated.

Fine-Grained Lock

The problem for the rough-grained lock implementation is that only one

thread can cope with the edge in margin area, as a result the synchronization

11

overhead is really high when the fraction of margin vertexes is high. But actually it’s

unnecessary to set a single Margin-Lock. We found there are 4 types of edge for an

object. They are marked with numbers in the following figure.

We still set a constain that edge of type 1 cannot be modified. When edge of

type 4 collapses, we just collapse it without caring about anything. Even when the

edge of 2 or 3 collapse, some other edges in margin area can still collapse. For

example, when the edge marked with 1 collapses, the edge in the margin area of

right side can still work normally. Also when the edge marked with 1 collapses, even

the purple edge in the same margin area can collapse. The reason is that the

collapse of that edge only influence vertex A and B.

Based on all the findings, we proposed a fine-grained lock implementation. In

this implementation, we maintain a vector for all the margin vertexes. And we use a

single lock a protect that vector. Whenever a vertex in margin tries to merge with

other vertex, it must access to the shared vector and find if the margin vertexes it

would influence have already been in the shared vector. If not, it puts itself in the

shared vector, otherwise it must wait until it can do the merge operation.

12

Results

We implemented our 4 parallel mesh simplification algorithms with both pthread

library and OpenMP. Then we ran experiments to compare and evaluate their

performance.

Experiments Setup

We ran our experiments on both 4-core MacBook Pro machine and AWS 8-core

Linux machine. For pthread implementation, we compile the code with standard

g++ compiler. For OpenMP implementation, we compile the code with Intel C++

Compiler (icpc).

PThread Speedup

First we compare the performance (speedup) of our parallel algorithms with thread

count ranging from 1 to 8. The performance with 1 thread is the serial result and

13

can be used as baseline. In this experiment, we use Stanford dragon as input mesh

file, with 0.1 compression ratio and 4x4x4 partition. All of our parallel algorithms

can achieve nearly linear speedup over serial version. Task queue based algorithm

has best performance since it does not synchronize margins. Simple (coarse

grained) lock approach has worst performance. Fine-grained lock approach has

performance similar to task queue based approach, but much better output

quality. For input mesh with small size (e.g. 5 MB), this pattern may change. 4

thread performance may beat 8 thread performance, since lock contention cost

becomes more obvious compared with computation cost.

Higher compression ratio results in more time consumed, since more computation

is needed. This experiment is run on Stanford Lucy mesh file. Fine-grained lock

approach has significant improvement over simple lock approach.

14

Rough-Grained Lock vs. Fine-Grained Lock

We found something abnormal for small size object. We run the Stanford

Bunny model for Rough Grained Lock implementation and Fine Grained Lock

implementation with different block numbers. As we discussed above, the more

blocks we have, the workloads are more balanced for all the threads, and hence the

faster should the program run. But the result shows that, for rough grained lock

implementation, it ran faster with 27 blocks rather than 64 blocks. And there is no

such phenomenon for fine grained lock implementation. We think the reason is

that there is a trade-off for rough grained lock implementation. Although the more

blocks bring good load balance, it also introduce more synchronizations. But our

fine grained lock implementation doesn’t have this problem, which ensure us the

fine grained lock help reduce the synchronizations a lot.

15

OpenMP Speedup

First we measured the running time of our various parallel mesh simplification

algorithms, and compare with the baseline serial algorithm. With 8 worker threads

running on 8-core machine, our parallel approaches can achieve ~6x speedup over

the initial serial version of algorithm. These results come from experiments with

Stanford lucy obj. The overall performance is similar with pthread implementation.

This is because under the hood, OpenMp is implemented with thread model.

16

17

Easy Partition vs. Task Queue

Load balance issue

18

For these two ways to partition the input mesh, we measured the time consumed

by each thread. The load is highly imbalanced in easy partition approach, because

each thread can only access its own block of mesh. After processing the assigned

block, that thread will be idle and the resource will be wasted. With adjustable

partition granularity, task queue based partition algorithm can assign multiple

blocks to a single worker thread. The work queue is pull based, which means the

worker thread can pull new work from the queue if the current work is done. As a

result, it achieves better load balance and shorter overall consumed time. It

typically achieves better performance with finer granularity.

Simplification Quality Comparison

 Original mesh Serial Task queue (4x4x4) Fine-grained lock

19

In order to improve the quality of output mesh when the compression ratio is low,

we designed and implemented algorithms with locking to synchronize updates on

margin vertices and edges. This is a trade off between speed and quality, since

locking will incur extra overhead and contention problem. The quality of output

mesh is nearly the same as output generated by original serial algorithm.

Reference
● Surface Simplification Using Quadric Error Metrics

● A Simple, Fast, and Effective Polygon Reduction Algorithm

● Mesh simplification in parallel

● Real-time mesh simplification using the GPU

● OpenMP Tutorial

● PThread Tutorial

● Thanks to Professor Todd’s several discussions with us

Work By Each Student

In general, we spend almost the same time on this project. We discussed

together to the final solutions, and we wrote the reports together. Therefore we

would say as a team we both contribute 50% to this project. More specifically:

Work By Bole Chen:

● Proposed lazy update serial version mesh simplification algorithm

● Implemented the serial version algorithm

● Proposed final solution to resolve the border problem

● Parallelized our algorithm with pThread

● Report writing

Work By Haixin Liu:

20

https://people.eecs.berkeley.edu/~jrs/meshpapers/GarlandHeckbert2.pdf
http://pds26.egloos.com/pds/201402/12/11/gdmag.pdf
https://pdfs.semanticscholar.org/ee52/0300bcbfcd768943d1734357d507c9e6b4d0.pdf
https://dl.acm.org/citation.cfm?id=1230128

● Benchmark our serial implementation and explored parallelism inside

● Tried our first approach to parallelize the algorithm

● Parallelized our algorithm with OpenMP

● Benchmarked performance of different algorithms

● Report writing

21

