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Summary 

Surface mesh simplification is the process of reducing the number of faces                       

used in a surface mesh while keeping the overall shape, volume and boundaries                         

preserved as much as possible. There are lots of mesh simplification algorithms,                       

and all of them are iterative, greedy algorithms that might cost really long time. One                             

big problem is that all these algorithms have really strong dependency, which                       

makes it hard to parallelize them. For this project, we proposed our new                         

lazy-update implementation of mesh simplification algorithm. This implementation               

gives us some spaces for parallelism. We explored different methods to parallelize                       

this our serial implementation with pThread and OpenMP. We run experiments on                       

a 8-core Linux machine from AWS and found that our final solution can achieve                           

nearly linear speedup without losing too much qualities. 

Background 

The problem of approximating a given input mesh with a less complex but                         

geometrically faithful representation is well-established in computer graphics.               

Given the visual complexity required to create realistic-looking scenes,                 

simplification efforts can be essential to efficient rendering. And different                   

 

 



 
 

simplification ratios are need for different precision requirements. The figures                   

below show simplifying Stanford Dragon from 100% to 1%.  

             

100%       50% 

             

  10%       1% 

In this work, we only handle the 3D OBJ files. A model object consists of                             

thousands to millions of triangles. Each triangle has its direction for illumination                       

and it shares 3 vertexes in 3D space with some other triangles. For the input file                               

with this format, the first line gives the number of vertex and triangle. Then follows                             

by the coordinate of each vertex and the vertex ids for each triangle. The output                             

files of mesh simplification algorithm should follow the same format.  

Serial Version Algorithm Introduction 
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The basic idea of mesh simplification algorithm is to maintain the error cost of                           

each edge from all triangles in a model object. Each time an edge with the lowest                               

error cost will be selected and collapsed. That two vertexes will be merged into one                             

single vertex. Then firstly, the topological structure of nearby area need to be                         

updated, and also the error costs of all related edge need to be re-calculated. The                             

following figure shows how collapsing a single edge would influence nearby                     

topological structure and other edges’ error costs.  

 

Although the basic idea of mesh simplification algorithm is simple and                     

straightforward, the implementation is complex. On the one hand, we have to                       

maintain a lot of data structure such as vertex, edge, triangle, and almost all of                             

these data have relationship and dependency, which means even the change of                       

one single vertex will lead to the update of a lot of other data. On the other hand,                                   

because the algorithm selects an edge with the lowest error cost to collapse for                           

each iteration, always minimum heap is used to maintain the error costs of all                           

edges. But the problem is that for each iteration, the top edge is popped out and at                                 

the same time, some other edges also need to be updated. As a result, the                             

structure of the minimum heap changes frequently. The following table shows the                       

pseudo-code of common mesh simplification algorithm.  
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Pseudo Code 

 

1. Read Vertex Data and Triangle Data, Initialize a Minimum Heap Q 

2. Foreach Edge: Calculate Error Cost, Push in Q 

3. While not Achieve Simplification Ratio Requirement: 

4: Pop Top Edge from Q 

5: Collapse the Edge 

6: Update Topological Structure in Nearby Area 

7: Calculate and Update Error Cost for Related Edges in Q 

8: Generate Output OBJ File 

 

Potential Parallelisms Inside 

Because in the algorithm there is really strong dependency inside each                     

iteration and between different iterations, we believe we have mainly two directions                       

to parallelize the mesh simplification algorithm. Firstly, we can try to find the                         

independent part inside each iteration. These independent tasks can be done                     

concurrently. And we can benchmark the fraction of the algorithm that is                       

parallelizable in the overall algorithm. According to Amdahl’s Law, we can know the                         

upper-bound of speedup we can achieve. Secondly, the basic idea is that actually                         

we can collapse edges from different parts of an object as long as they don’t                             

influence each other. It’s obvious that the collapse of edge in the left side doesn’t                             

have any impact on the topological structure as well as error cost of right side. If                               

this approach works, the speedup we can gain just based on how much resources                           

we have to run the program. 

Challenges for Parallelisms  
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The challenge for approach one is to find the parallelizable part in original                         

algorithm. And our concern is that the fraction of the parallelizable part can be not                             

enough to gain high speedup. And also the cost for each iteration is limited, hence                             

the synchronization can be a huge overhead compared to computation time. 

The challenge for approach two is how to partition the mesh and join together                           

after processing. Or in other words, how do resolve the border problem. One of the                             

papers we studied uses greedy BFS approach to produce even partitions. It uses                         

MPI to parallel the algorithm, and manages the border problem with                     

communications. However, the details of this algorithm is not clearly described in                       

this paper. We need to find out how to partition input mesh and rejoin the                             

partitions by ourselves. Also because the number of vertex that along the border                         

margin could be huge, synchronizations would be needed frequently during the                     

algorithm, which would prevent us from achieving high speedup. 

Approach 

Lazy-update Serial Implementation of Mesh Simplification 

According our study, we found that some original mesh simplification                   

algorithms are really hard to parallelize with our partition approach because of the                         

border problem. The reason is that for each collapse operation, besides one edge                         

needs to be popped out, a lot of other related edges inside the minimum heap                             

need to be updated. Also a lot of meta datas need to be updated during one single                                 

collapse. All of these factors make the algorithm has really strong dependency. To                         

make our way to parallelism easier, we proposed a lazy update implementation.  

Instead of changing the value of edge and vertex, we just give an order id to                               

each vertex and edge. If a vertex’s value change, we just set that vertex as stale, and                                 

insert a new one. Also for a edge in the minimum heap, if the order id of that two                                     

vertexes not equal to the vertexes’ lastest id, the edge should be seemed as invalid,                             
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hence we just pop that edge out without collapsing it. We call it lazy update because                               

rather than change the value of edge in the minimum heap, we just set that                             

element as invalid, and push in a new one. In our new implementation, the                           

operations to the minimum heap reduce a lot, and therefore it’s easier for us to                             

parallelize it. The following table shows the pseudo-code of our lazy update mesh                         

simplification algorithm.  

Pseudo Code 

 

1. Read Vertex Data and Triangle Data, Initialize a Minimum Heap Q 

2. Foreach Edge: Calculate Error Cost, Push in Q 

3. While not Achieve Simplification Ratio Requirement: 

4: Pop Top Edge from Q 

5: If Edge is Invalid: Continue 

6: Collapse the Edge 

7: Update Topological Structure in Nearby Area  

8: Calculate and Update Error Cost for Related Edges in Q 

9: Push New Edges into Q & Set Old Edges as Invalid 

10: Generate Output OBJ File 

 

Preliminary results 

In this section, we show our benchmark on our new serial lazy update                         

algorithm. We show the running time, the percentage of the potential parallel parts                         

in the serial algorithm and how many independent tasks we can generate to                         

parallelize for the algorithm for models of different size and with different                       

simplification ratio. We run all these benchmarks in a 4-core Mac Pro machine with                           

GCC compiler. 
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Stanford Bunny with 35,292 vertices and 70,580 triangles 

Ratio  Running Time  Percentage of 
Parallelism 

Concurrent 
tasks number 

0.5  3.63s  62.81%  7.23 

0.1  7.80s  53.57%  7.13 

0.01  8.96s  53.12%  7.11 

 

Stanford Dragon with 54,855 vertices and 109,227 triangles 

Ratio  Running Time  Percentage of 
Parallelism 

Concurrent 
tasks number 

0.5  4.81s  65.25%  6.85 

0.1  10.81s  53.82%  6.81 

0.01  12.49s  52.66%  6.73 

 

Stanford Lucy with 1,002,540 vertices and 2,005,076 triangles 

Ratio  Running Time  Percentage of 
Parallelism 

Concurrent 
tasks number 

0.2  125.32s  48.46%  7.06 

0.1  315.74s  45.21%  7.05 

0.01  375.13s  43.26%  7.03 

 

We can see from the experiments that when the size of model is large, it takes                               

longer time for the mesh simplification algorithm to complete. That's why we need                         

parallelism to speedup it. Another thing to notice is that the potential parallel part                           
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in this algorithm is just about 40% and the concurrent task number is no more than                               

8. We explored our first try based on these results.  

First Try to Parallelism 

Our first try to parallelize the algorithm is to identify the independent loops                         

within the serial algorithm. These loops can be distributed to many workers in a                           

shared address space fashion. Common implementations include OpenMp and                 

Pthread library. We implemented this parallel algorithm in both of these two ways.                         

The first step is to benchmark the serial algorithm and find out the time-consuming                           

independent loops. Unfortunately, this mesh simplification algorithm is highly                 

serial, since each modification is based on the previous one. Finally we decided to                           

parallelize the loop within one modification, which updates the error costs of all                         

neighbor edges of a merged vertex.  

We firstly implemented the parallel program with Pthreads and then with                     

OpenMP, and tested them on Macbook Pro machine. However, we observed a slow                         

down of the running time instead of speedup. We then tested them on 8-core AWS                             

Linux machine, and got the similar results. We found out 3 reasons why this                           

approach does not work: 

1. In each iteration of this loop, a shared queue is maintained. The concurrent                         

update of this queue need to be protected by lock (or atomic operations). 

2. The task for each worker thread is not computation intensive. It only involves                         

a few calculations, and then updates the shared data structure. You can see                         

some related pre-result from last section in Preliminary results. 

3. The overhead of creating/destroying threads. 

To overcome these issues, we tried many ways to optimize it. We kept buffer                           

to accumulate local updates, and tried to use as few locks as possible by batch                             

updating. We maintained a pool of threads to avoid creating threads on the fly.                           

However, the improvement is not satisfying.  
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Partition for Parallelism 

After our first (but not successful) attempt in parallelizing independent loops within                       

serial code, we tried several other approaches to do mesh simplification in parallel.                         

A straightforward idea is to partition the original mesh into several blocks, assign                         

each block to a worker thread, and then merge the blocks into the output mesh.                             

However, there are several difficulties in implementing this parallel algorithm. The                     

first challenge is how to partition the input mesh into blocks. These blocks should                           

be in roughly same size, so that the workload is balanced among worker threads.                           

Another challenge is how to deal with the block border vertices and edges. If these                             

elements on or near border change significantly after processing, partitioned blocks                     

will be hard or even impossible to form a new complete mesh. 

We began our exploration with simple assumptions and implementations, and then                     

refined the algorithm for better performance (speed & quality) step by step. 

Margin Unmodified  

Easy Partition 

We start with the simple way to perform the partition. For the input mesh, we first                               

calculate the center point, which has the average value of maximum and minimum                         

x, y and z value of vertices. Based the this center point, the input mesh is                               

partitioned into 8 (2x2x2) blocks. We start exactly 8 worker threads to process these                           

8 blocks independently. For border vertices and edges (which we call margin), we                         

just keep them unmodified in the algorithm. In this way, there is no synchronization                           

among worker threads needed. Also, no explicit merge process after dealing with                       

each block is needed, since the margin is left unchanged. 

Partition with Task Queue 

One of the major drawback of the easy partition algorithm is load balance problem.                           

It is very likely that the 8 blocks contain different number of triangles, so that the                               
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workload of each worker thread can vary significantly. The slowest thread will                       

determine the performance of whole program. 

In order to improve the load balance, we partition the input mesh with finer                           

granularity. With similar method, we partition the input mesh evenly into 2x2x2,                       

3x3x3 and 4x4x4 spatial blocks. We set up a task queue which contains workload of                             

all these blocks at the beginning. All worker threads will pull work (block of mesh)                             

from this queue and then process that block. The algorithm will finish once the task                             

queue is empty. We observed much better load balance among worker threads                       

with this approach. All threads take nearly same amount of time to do tasks. As a                               

result, the overall speedup of this algorithm is better than the former naive                         

approach. 

Margin Protected 

For the two approaches in the last section, we just make the margins between                           

different blocks as unchangeable. This choice comes with two-side effects. On one                       

hand, there is no synchronization on the border so that the contention is not a                             

problem in this case. On the other hand, the quality of output mesh is not satisfying                               

with low compression ratio. In this case, there are few vertices left in each block,                             

and the border lines can be clearly seen. The quality is much worse compared with                             

the output generated by serial algorithm. The figures below show the problem for                         

the two methods before. 
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                Original mesh                    0.02 with serial           0.02 with easy partition   0.02 with task queue (3x3x3) 

You can see that simplification quality for the previous two methods is poor,                         

the density of the margin area is really high while the density inside each partition is                               

low. Therefore we must cope with the border problem for acceptable simplification                       

quality. We then tried two different ways to resolve the border problem. 

Rough-Grained Lock 

The border problem is that when a thread is collapsing an edge near the                           

margin area in a partition, it might change the topological structure as well as some                             

values in another partition. If there is another thread being copes with that partition                           

at the same time, there must be race condition problem. So when a thread is                             

collapsing the edge in the margin area, all the other edges in margin area must be                               

protected and cannot be coped with. Because the collapse of the edge in margin                           

area doesn’t influence the data inside each partition, we only need to protect the                           

vertexes and edges in the margin area.  

The basic idea of this implementation is that we have a global Margin-Lock.                         

When a thread tries to collapse an edge inside a partition, it just does whatever it                               

wants. But when a thread tries to collapse an edge in the margin area, it must                               

acquire the Margin-Lock first. It must release the lock after all the data related to                             

other partitions have been updated.  

Fine-Grained Lock 

The problem for the rough-grained lock implementation is that only one                     

thread can cope with the edge in margin area, as a result the synchronization                           
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overhead is really high when the fraction of margin vertexes is high. But actually it’s                             

unnecessary to set a single Margin-Lock. We found there are 4 types of edge for an                               

object. They are marked with numbers in the following figure. 

 

We still set a constain that edge of type 1 cannot be modified. When edge of                               

type 4 collapses, we just collapse it without caring about anything. Even when the                           

edge of 2 or 3 collapse, some other edges in margin area can still collapse. For                               

example, when the edge marked with 1 collapses, the edge in the margin area of                             

right side can still work normally. Also when the edge marked with 1 collapses, even                             

the purple edge in the same margin area can collapse. The reason is that the                             

collapse of that edge only influence vertex A and B. 

Based on all the findings, we proposed a fine-grained lock implementation. In                       

this implementation, we maintain a vector for all the margin vertexes. And we use a                             

single lock a protect that vector. Whenever a vertex in margin tries to merge with                             

other vertex, it must access to the shared vector and find if the margin vertexes it                               

would influence have already been in the shared vector. If not, it puts itself in the                               

shared vector, otherwise it must wait until it can do the merge operation.  
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Results 

We implemented our 4 parallel mesh simplification algorithms with both pthread                     

library and OpenMP. Then we ran experiments to compare and evaluate their                       

performance. 

Experiments Setup 

We ran our experiments on both 4-core MacBook Pro machine and AWS 8-core                         

Linux machine. For pthread implementation, we compile the code with standard                     

g++ compiler. For OpenMP implementation, we compile the code with Intel C++                       

Compiler (icpc). 

PThread Speedup 

 

First we compare the performance (speedup) of our parallel algorithms with thread                       

count ranging from 1 to 8. The performance with 1 thread is the serial result and                               
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can be used as baseline. In this experiment, we use Stanford dragon as input mesh                             

file, with 0.1 compression ratio and 4x4x4 partition. All of our parallel algorithms                         

can achieve nearly linear speedup over serial version. Task queue based algorithm                       

has best performance since it does not synchronize margins. Simple (coarse                     

grained) lock approach has worst performance. Fine-grained lock approach has                   

performance similar to task queue based approach, but much better output                     

quality. For input mesh with small size (e.g. 5 MB), this pattern may change. 4                             

thread performance may beat 8 thread performance, since lock contention cost                     

becomes more obvious compared with computation cost. 

 

Higher compression ratio results in more time consumed, since more computation                     

is needed. This experiment is run on Stanford Lucy mesh file. Fine-grained lock                         

approach has significant improvement over simple lock approach. 
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Rough-Grained Lock vs. Fine-Grained Lock 

We found something abnormal for small size object. We run the Stanford                       

Bunny model for Rough Grained Lock implementation and Fine Grained Lock                     

implementation with different block numbers. As we discussed above, the more                     

blocks we have, the workloads are more balanced for all the threads, and hence the                             

faster should the program run. But the result shows that, for rough grained lock                           

implementation, it ran faster with 27 blocks rather than 64 blocks. And there is no                             

such phenomenon for fine grained lock implementation. We think the reason is                       

that there is a trade-off for rough grained lock implementation. Although the more                         

blocks bring good load balance, it also introduce more synchronizations. But our                       

fine grained lock implementation doesn’t have this problem, which ensure us the                       

fine grained lock help reduce the synchronizations a lot. 
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OpenMP Speedup  

First we measured the running time of our various parallel mesh simplification                       

algorithms, and compare with the baseline serial algorithm. With 8 worker threads                       

running on 8-core machine, our parallel approaches can achieve ~6x speedup over                       

the initial serial version of algorithm. These results come from experiments with                       

Stanford lucy obj. The overall performance is similar with pthread implementation.                     

This is because under the hood, OpenMp is implemented with thread model. 
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Easy Partition vs. Task Queue  

Load balance issue 
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For these two ways to partition the input mesh, we measured the time consumed                           

by each thread. The load is highly imbalanced in easy partition approach, because                         

each thread can only access its own block of mesh. After processing the assigned                           

block, that thread will be idle and the resource will be wasted. With adjustable                           

partition granularity, task queue based partition algorithm can assign multiple                   

blocks to a single worker thread. The work queue is pull based, which means the                             

worker thread can pull new work from the queue if the current work is done. As a                                 

result, it achieves better load balance and shorter overall consumed time. It                       

typically achieves better performance with finer granularity. 

Simplification Quality Comparison 

 

 

        Original mesh                      Serial                     Task queue (4x4x4)         Fine-grained lock 
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In order to improve the quality of output mesh when the compression ratio is low,                             

we designed and implemented algorithms with locking to synchronize updates on                     

margin vertices and edges. This is a trade off between speed and quality, since                           

locking will incur extra overhead and contention problem. The quality of output                       

mesh is nearly the same as output generated by original serial algorithm. 
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● Real-time mesh simplification using the GPU 

● OpenMP Tutorial 

● PThread Tutorial 

● Thanks to Professor Todd’s several discussions with us 

Work By Each Student 

In general, we spend almost the same time on this project. We discussed                         

together to the final solutions, and we wrote the reports together. Therefore we                         

would say as a team we both contribute 50% to this project. More specifically: 

Work By Bole Chen: 

● Proposed lazy update serial version mesh simplification algorithm 

● Implemented the serial version algorithm 

● Proposed final solution to resolve the border problem  

● Parallelized our algorithm with pThread 

● Report writing 

Work By Haixin Liu: 
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https://people.eecs.berkeley.edu/~jrs/meshpapers/GarlandHeckbert2.pdf
http://pds26.egloos.com/pds/201402/12/11/gdmag.pdf
https://pdfs.semanticscholar.org/ee52/0300bcbfcd768943d1734357d507c9e6b4d0.pdf
https://dl.acm.org/citation.cfm?id=1230128


 
 

● Benchmark our serial implementation and explored parallelism inside 

● Tried our first approach to parallelize the algorithm 

● Parallelized our algorithm with OpenMP 

● Benchmarked performance of different algorithms 

● Report writing 
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